Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 11(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36009759

ABSTRACT

Several intermediate metabolites harbour cell-signalling properties, thus, it is likely that specific metabolites enable the communication between neighbouring cells, as well as between host cells with the microbiota, pathogens, and tumour cells. Mitochondria, a source of intermediate metabolites, participate in a wide array of biological processes beyond that of ATP production, such as intracellular calcium homeostasis, cell signalling, apoptosis, regulation of immune responses, and host cell-microbiota crosstalk. In this regard, mitochondria's plasticity allows them to adapt their bioenergetics status to intra- and extra-cellular cues, and the mechanisms driving such plasticity are currently a matter of intensive research. Here, we addressed whether mitochondrial ultrastructure and activity are differentially shaped when human monocytes are exposed to an exogenous source of lactate (derived from glycolysis), succinate, and fumarate (Krebs cycle metabolic intermediates), or butyrate and acetate (short-chain fatty acids produced by intestinal microbiota). It has previously been shown that fumarate induces mitochondrial fusion, increases the mitochondrial membrane potential (Δψm), and reshapes the mitochondrial cristae ultrastructure. Here, we provide evidence that, in contrast to fumarate, lactate, succinate, and butyrate induce mitochondrial fission, while acetate induces mitochondrial swelling. These traits, along with mitochondrial calcium influx kinetics and glycolytic vs. mitochondrial ATP-production rates, suggest that these metabolites differentially shape mitochondrial function, paving the way for the understanding of metabolite-induced metabolic reprogramming of monocytes and its possible use for immune-response intervention.

2.
Photodiagnosis Photodyn Ther ; 40: 103174, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36602069

ABSTRACT

BACKGROUND: Photodynamic therapy (PDT) is used to treat tumors through selective cytotoxic effects. PDT induces damage-associated molecular patterns (DAMPs) expression, which can cause an immunogenic death cell (IDC). In this study we identified potential immunogenic epitopes generated by PDT on triple-negative breast cancer cell line (MDA-MB-231). METHODS: MDA-MB-231 cells were exposed to PDT using ALA (160 µg/mL)/630 nm at 8 J/cm2. Membrane proteins were extracted and separated by 2D PAGE. Proteins overexpressed were identified by LC-MS/MS and analyzed in silico through a peptide-HLA docking in order to identify the epitopes with more immunogenicity and antigenicity properties, as well as lower allergenicity and toxicity activity. The selected peptides were evaluated in response to macrophage activation and cytokine release by flow cytometry. RESULTS: Differential proteins were overexpressed in the cells treated with PDT. A group of 16 peptides were identified from them, established in a rigorous selection by measuring antigenicity, immunogenicity, allergenicity, and toxicity in silico. The final selection was based on molecular dynamics, where 2 peptides showed the highest stability regarding to the RMSD value. These peptides were obtained from the proteins calreticulin and HSP90. The cytokine analysis evidenced macrophage activation by the releasing of TNF. CONCLUSION: Two peptides were identified from calreticulin and HSP90; proteins induced by PDT in MDA-MB-231 cells. Both epitopes showed immunogenic potential as a peptide-based vaccine for triple-negative breast cancer.


Subject(s)
Breast Neoplasms , Photochemotherapy , Triple Negative Breast Neoplasms , Vaccines , Humans , Female , Photosensitizing Agents , Photochemotherapy/methods , Calreticulin/metabolism , Calreticulin/therapeutic use , Epitopes/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Chromatography, Liquid , Tandem Mass Spectrometry , Vaccines/therapeutic use , Cytokines/metabolism , Cell Line, Tumor
3.
Dev Comp Immunol ; 127: 104303, 2022 02.
Article in English | MEDLINE | ID: mdl-34728275

ABSTRACT

Bats are the only flying mammals known. They have longer lifespan than other mammals of similar size and weight and can resist high loads of many pathogens, mostly viruses, with no signs of disease. These distinctive characteristics have been attributed to their metabolic rate that is thought to be the result of their flying lifestyle. Compared with non-flying mammals, bats have lower production of reactive oxygen species (ROS), and high levels of antioxidant enzymes such as superoxide dismutase. This anti-oxidative vs. oxidative profile may help to explain bat's longer than expected lifespans. The aim of this study was to assess the effect that a significant reduction in flying has on bats leukocytes mitochondrial activity. This was assessed using samples of lymphoid and myeloid cells from peripheral blood from Artibeus jamaicensis bats shortly after capture and up to six weeks after flying deprivation. Mitochondrial membrane potential (Δψm), mitochondrial calcium (mCa2+), and mitochondrial ROS (mROS) were used as key indicators of mitochondrial activity, while total ROS and glucose uptake were used as additional indicators of cell metabolism. Results showed that total ROS and glucose uptake were statistically significantly lower at six weeks of flying deprivation (p < 0.05), in both lymphoid and myeloid cells, however no significant changes in mitochondrial activity associated with flying deprivation was observed (p > 0.05). These results suggest that bat mitochondria are stable to sudden changes in physical activity, at least up to six weeks of flying deprivation. However, decrease in total ROS and glucose uptake in myeloid cells after six weeks of captivity suggest a compensatory mechanism due to the lack of the highly metabolic demands associated with flying.


Subject(s)
Chiroptera , Mitochondria , Animals , Leukocytes , Longevity , Mammals
4.
Front Immunol ; 11: 1715, 2020.
Article in English | MEDLINE | ID: mdl-32849605

ABSTRACT

Monocytes can develop immunological memory, a functional characteristic widely recognized as innate immune training, to distinguish it from memory in adaptive immune cells. Upon a secondary immune challenge, either homologous or heterologous, trained monocytes/macrophages exhibit a more robust production of pro-inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, than untrained monocytes. Candida albicans, ß-glucan, and BCG are all inducers of monocyte training and recent metabolic profiling analyses have revealed that training induction is dependent on glycolysis, glutaminolysis, and the cholesterol synthesis pathway, along with fumarate accumulation; interestingly, fumarate itself can induce training. Since fumarate is produced by the tricarboxylic acid (TCA) cycle within mitochondria, we asked whether extra-mitochondrial fumarate has an effect on mitochondrial function. Results showed that the addition of fumarate to monocytes induces mitochondrial Ca2+ uptake, fusion, and increased membrane potential (Δψm), while mitochondrial cristae became closer to each other, suggesting that immediate (from minutes to hours) mitochondrial activation plays a role in the induction phase of innate immune training of monocytes. To establish whether fumarate induces similar mitochondrial changes in vivo in a multicellular organism, effects of fumarate supplementation were tested in the nematode worm Caenorhabditis elegans. This induced mitochondrial fusion in both muscle and intestinal cells and also increased resistance to infection of the pharynx with E. coli. Together, these findings contribute to defining a mitochondrial signature associated with the induction of innate immune training by fumarate treatment, and to the understanding of whole organism infection resistance.


Subject(s)
Caenorhabditis elegans/drug effects , Escherichia coli Infections/prevention & control , Escherichia coli/pathogenicity , Fumarates/pharmacology , Immunity, Innate/drug effects , Immunologic Memory/drug effects , Mitochondria/drug effects , Monocytes/drug effects , Animals , Caenorhabditis elegans/immunology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/microbiology , Calcium Signaling/drug effects , Cells, Cultured , Cytokines/metabolism , Escherichia coli/immunology , Escherichia coli Infections/immunology , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Host-Pathogen Interactions , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/immunology , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Monocytes/immunology , Monocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...